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Understanding decreased fertility in women
carriers of the FMR1 premutation: a possible
mechanism for Fragile X-Associated Primary
Ovarian Insufficiency (FXPOI)
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Abstract

Fragile X syndrome (FXS) and its associated disorders are caused by the expansion of the CGG repeat in the 5′
untranslated region of the fragile X mental retardation 1 gene (FMR1). The full mutation, defined as >200
cytosine-guanine-guanine (CGG) triplet repeats, causes FXS. Individuals with 55–199 CGG repeats, classified as
premutation carriers, are affected by two distinct disorders depending on their premutation status. Disorders
associated with premutation carriers include: Fragile X-associated Tremor Ataxia Syndrome (FXTAS) and Fragile
X-associated Primary Ovarian Insufficiency (FXPOI). The molecular similarities of FXTAS and FXPOI (e.g. overabundance
of FMR1 transcript and intranuclear inclusions) suggest that similar molecular mechanisms underlie both FXTAS and
FXPOI. The current hypothesis describes the underlying mechanism for FXTAS as an mRNA gain-of-function mutation,
however the underlying mechanism for FXPOI remains unresolved. New data suggests that repeat associated
non-AUG (RAN) translation could underlie FXPOI.
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Background
Fragile X Syndrome (FXS; OMIM 300624) is caused by
hypermethylation of the expanded CGG repeats adjacent
to exon 1 of the Fragile X Mental Retardation 1 gene
(FMR1); this mutation affects > 98% of individuals with
FXS [1-3]. The disorder affects ~1/4000 males and ~1/
8000 females in the general Caucasian population,
with ~60% of individuals with the full mutation also
having autism spectrum disorders [3-6]. The expanded
CGG repeats can be categorized as common, intermedi-
ate, premutation, and full mutation alleles. Common al-
leles found in the general population usually contain 6–40
CGG repeats which are stable and usually do not expand
upon transmission from parent to offspring. Intermediate
alleles containing 41–60 CGG repeats have variable ex-
pansion risks whereas premutation alleles (i.e. 55–199
CGG repeats) are usually unmethylated and can expand
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to the full mutation (e.g. > 200 CGG repeats) upon trans-
mission from parent to offspring [1,2]. In the full muta-
tion, the expanded CGG repeat can be recognized as a
CpG island resulting in methylation and transcriptional si-
lencing of FMR1 [1,2,7]. Transcription silencing of FMR1
results in the loss of Fragile X Mental Retardation Protein
(FMRP), which is necessary for neuronal development and
cognition. FMR1 premutation carriers also have disorders
associated with ovarian function including loss of fertility
and hypoestrogenism (i.e., FXPOI) and neurodegeneration
with associated memory loss and general Parkinsonism
(i.e., FXTAS).
FXPOI in female premutation carriers
Before the discovery of FXPOI, the consequences of be-
ing a female premature carrier was ascribed to the risk
of passing on a full mutation to offspring; the ovarian
dysfunction reported by many carriers was underappre-
ciated. It was not until others observed that premature
ovarian failure, defined as menopause before the age of
40, occurred in about 24% of FMR1 premutation carriers
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compared to only ~1% of all women in the general po-
pulation that the scientific community started to closely
examine the association between FMR1 and ovarian
function [8-12]. Reports indicate that premutation alleles
with 59 to 99 CGG repeats are associated with an in-
creased risk of ovarian dysfunction in female carriers
[13,14]. This positive linear association of repeat size
with ovarian dysfunction seems to plateau or decrease
for premutation carriers with > 100 CGG repeats, how-
ever the exact threshold is currently unknown [15-19].
Furthermore, the linear association is not consistent be-
cause some intermediate repeats were associated with an
increased risk for FXPOI compared to premutation re-
peats >100 [13,14]. Additionally, the length of the CGG
repeat contributes to the variation observed in age of
ovarian dysfunction resulting in a loss of reproductive
capacity; currently the threshold for the onset of FXPOI
is ambiguous [13,14,20]. Because of these differences be-
tween menopause and fragile x-associated ovarian insuffi-
ciency, the term “primary ovarian insufficiency” proposed
by Welt and originally suggest by Albright compared to
premature ovarian failure has been used to better describe
the condition [21-23].

Similarities of FXTAS and FXPOI
The molecular mechanism underlying FXPOI is enig-
matic but using RAN translation in FXTAS as a model
could illuminate the disease biology of FXPOI. Similar
to FXTAS, oocytes in FMR1 premutation ovarian insuffi-
ciency mouse models display aberrant accumulation of
protein, elevated levels of ubiquitination which reports
suggest are consistent with evidence of the FMR1 gain-
of-function mechanism hypothesized in FXTAS [9,24].
Todd and colleagues suggest that inclusion formation
in FXTAS could be mediated by the translational by-
products of premutation alleles [25]. These aberrant FMRP
by-products of non-AUG (RAN) translation, which have
large glycine residues, mediate inclusion formation [25].
In fact, the mechanism was first reported by Zu and co-
workers using spinocerebellar ataxia type 8 (SCA8) and
myotonic dystrophy type 1 (DM1) as models to elucidate
pathogenesis of triplet diseases [26]. Similar to other tri-
nucleotide repeat expansion disorders (TNR), SCA8 and
DM1 transcripts containing expanded cytosine-thymine-
guanine (CTG) repeats were translated via RAN. The
translational by-products of CTG repeats resulted in
the accumulation of aberrant proteins with large leu-
cine polypeptide tracks [26]. Further analysis revealed
that these RAN translational by-products resulted in
significant pathology including neurodegeneration, a hall-
mark of TNR. Moreover, Todd and colleagues demon-
strated that similar to SCA8 and DM1, expanded CGG
repeats (>90) were translated in Fragile X premutation
carriers; the resulting translational products were high
molecular weight FMRP with glycine residues, which the
authors termed FMRpolyG [25]. FMRpolyG was shown to
be important to inclusion formation and neurodegenera-
tion, distinctive features of FXTAS and fully recapitulated
the FXTAS phenotype [25].

Conclusion and perspective
The lucidity of the molecular mechanism of FXTAS is
emerging, however the pathobiology of FXPOI is opaque
[27]. This would suggest that greater effort is needed to
elucidate the underlying mechanisms of FXPOI via ani-
mal models and clinical studies using appropriate popu-
lations. Likewise, mice and other animal models could
present opportunities to determine whether there are
threshold effects for CGG repeat length in FXPOI and
infer the biological mechanism. Namely, only a subset of
premutation carriers develop FXPOI; one case report de-
scribed premutation monozygotic twins discordant for
the FXPOI phenotype although the X-inactivation ratios
were similar for both sisters [28]. This is a very fascinat-
ing case report, and determining the genetic context of
the premutation alleles by examining genetic elements
(e.g., SNPS, CNVs) on the X chromosome (and if pos-
sible sequence their genomes) to determine the genetics
associated with this is very compelling.
Finally, characterizing RAN translation by-products in

animal models of FXPOI could provide the molecular evi-
dence to understanding ovarian ageing associated with
FMR1. Regardless, Todd and colleagues have shown that
the RAN translation mechanism of premutation CGG re-
peats produces aberrant proteins essential for inclusion
formation, resulting in FXTAS pathology. In FXPOI, RAN
translation could occur in ovaries, granulosa cells, and/or
other cell types. Given that inclusion formation has been
found in several tissues of individuals with FXTAS, it is
reasonable to assume that these inclusions exist in FXPOI.
Confirmation of the importance of RAN translation by-
products to FXPOI will significantly increase our under-
standing of the disorder and could provide an avenue to
understanding ovarian dysfunction in FMR1 premutation
carriers.
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