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Abstract

Background: Iron deficiency is especially common in women during the reproductive age and it is estimated that
52% of pregnant women have iron deficiency anemia. Maternal iron deficiency with or without anemia in pregnancy
may have consequences for the fetus, where it may have an impact on the cerebral development of the brain. Both
animals and adult human studies support that iron deficiency affects psychomotor development, behavioral traits, and
cognitive functions in the offspring. However, it has not yet been established whether the availability of sufficient iron
is particularly important in certain phases during brain development, and whether possible damages are reversible if
iron supplementation is provided during pregnancy. Here we report results from a pilot study in an experimental rat
model suitable for introducing iron deficiency in the fetal rat brain.

Methods: The model was utilized for examination of the potential to reverse changes in fetal brain iron by maternal
parenteral iron administration. Fertilized females subjected to iron deficiency without anemia were subcutaneously
injected with iron isomaltoside at the day of mating (E0), 14 days into pregnancy (E14), or at the day of birth (Postnatal
(P) 0). Blood, brain and liver in the offspring were examined on P0 or in adulthood on postnatal day P70.

Results: Maternal iron restriction during pregnancy led to significantly lower levels of iron in the brains of newborn rats
compared to levels in pups of iron sufficient mothers. Females fed ID diet (5.2 mg/kg Fe) had offspring with significantly
lower cerebral iron compared to a control group fed a standard diet (158 mg/kg Fe). Injection of IIM to pregnant ID
females on E0 or E14 yielded normalization of Fe in the developing brain known to express elevated levels of capillary
transferrin receptors, indicating that the administered iron passed the placenta and fetal blood brain barrier.

Conclusions: In future studies, this translational model may be applied to examine morphological and biochemical
consequences of iron deficiency and iron deficiency treatment in the developing fetal brain.
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Background
According to the World Health Organization (WHO), iron
deficiency affects approximately 20% of the population
worldwide equal to approximately 1.4 billion people. Iron
deficiency is especially common in women during the
reproductive age and in young children [1]. A major conse-
quence of iron deficiency is anemia, and in developing

countries, it is estimated that 52% of pregnant women
have iron deficiency anemia [1]. The frequencies of
iron deficiency anemia in the UK in the first, second,
and third trimesters are approximately 2, 8, and 27%,
respectively [2].
Maternal iron deficiency anemia in pregnancy may

have consequences for both mother [3] and fetus/new-
born. Some consequences for the fetus include ‘small for
gestational age’ (SGA) and intrauterine growth restric-
tion (IUGR), which can complicate the neonatal period
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and by itself affect brain development of the fetus/new-
born [4–6]. Iron is an essential co-factor for many
enzymes, which are important in normal cell physiology,
e.g. mitosis. Thus, there is a good reason to believe that
iron deficiency in the developing brain even without
fetal anemia may adversely affect the developing fetal
brain [7]. In the central nervous system, iron is a co-fac-
tor for a variety of proteins and lipids vital for the nor-
mal cellular function. Iron is essential for cell division
[8], including neuronal precursors of the developing
brain, hence making gestational iron deficiency a serious
challenge.
Iron deficiency in experimental animals affects den-

dritic growth, synaptic formation, and the function of
oligodendrocytes, i.e. axon myelination [7, 9, 10]. Iron
deficiency affects specific regions of the developing
brain, including basal ganglia and hippocampus, which
are involved in recognition memory, cognitive functions,
and other higher cerebral functions [4, 11, 12]. Both
experimental animals and adult human studies support
the notion that iron deficiency affects psychomotor
development, behavioral traits (anger, fear, anxiety), and
cognitive functions in the offspring [7, 13–23]. However,
it has not yet been established whether the availability of
sufficient iron is particularly important in certain phases
during brain development, and whether possible dam-
ages are reversible if maternal iron supplementation dur-
ing pregnancy is applied. Further, little is known about
transfer of iron across the placenta and the fetal blood-
brain barrier. Properly designed interventional trials of
iron treatment controlling for cofactors, correct dosing,
and way of administration etc. either as maternal treat-
ment during pregnancy or in the neonates are still war-
ranted. Animal models of iron deficiency treatment
may provide some information of how iron deficiency
effects morphological brain development and transla-
tional animal models are relevant in this aspect as it
allows controlled experimental conditions and post-
mortem tissue for biochemical and morphological ex-
aminations. We here describe results from a pilot
study in an experimental rat model suitable for intro-
ducing iron deficiency in the developing brain.
This model was utilized for examination of the po-

tential to reverse eventual changes in fetal brain iron
by means of maternal parenteral (i.e. subcutaneous)
iron administration.

Methods
Eight female rats aged postnatal day 42 (P42) were fed a
normal diet with an iron content of 158 mg/kg (Altromin,
Germany) (control rats (group N)) for six + six weeks,
equal to 12 weeks. In parallel, 56 female rats were also
initially fed the normal diet for six weeks until they
reached P42. Then they were given an iron deficient diet

for another six weeks with an iron content of 5.2 mg/kg
(Altromin, Germany). The rats were fertilized by male rats
fed the normal diet and maintained on the two different
diets. For iron supplementation, the maternal rats fed the
diet with a low iron content were injected subcutaneously
with iron isomaltoside (Monofer®, Pharmacosmos A/S,
Holbaek, Denmark) at a dose of 80 mg/kg on day E0 (the
day of conception, group A), E14 (14 days after concep-
tion, group B), or the day of birth, day P0 (group C).
Twelve pups aged P0 (date of birth) were obtained from
the pregnant rats of groups A, B, C, and N (controls), eu-
thanized and examined for brain iron levels. The Danish
Experimental Animal Inspectorate under the Ministry of
Food and Agriculture (permission no. 2013–15–2934 −
00776) approved the handling of the animals in this study.
The brain stem of the pups were dissected and used for

detection of the concentration of iron by Inductively
Coupled Argon Plasma with Optical Emission Spectrom-
etry detection (ICP-OES) (ICAP 6300 Duo View, Thermo
Scientific). In brief, the tissue samples were freeze dried,
homogenized, and transferred to Teflon vessels. The
samples were then digested using microwave assisted acid
digestion with 8 mL concentrated nitric acid for 10 min at
1200 W. Four cooled digestates were diluted to volume
with ultrapure water and transferred to plastic flasks, and
allowed to settle before being analyzed for iron. Iron
concentration was determined by ICP-OES. All were
measured axially at two to three wavelengths. All data are
shown as mean ± standard error of the mean (SEM). One-
way Analysis of Variance (ANOVA) analysis with Tukey’s
multiple comparison post-hoc tests was performed using
the GraphPad Prism version 6.01 software in order to
compare data from all groups to controls or to the
respective dietary group (e.g. A vs B). Values of p < 0.05
were considered statistically significant.

Results
The pups of iron deficient mothers that did not receive
parenteral iron during pregnancy (C) had a significant,
40% reduction (6.2 ± 0.3 μg/g) of the iron level in the
brain compared to pups of the control mothers (N, 10.5
± 0.3 μg/g) (Fig. 1). In contrast, pups of iron deficient
mothers that received parenteral iron two thirds into the
pregnancy (E14, B group) had amounts of brain iron
levels that did not differ from the control group at birth
(Fig. 1). Pups of mothers treated with iron at the day of
conception (E0, A) had raised concentrations of iron
compared to the group that did not receive iron (Fig. 1).

Discussion
We have in this brief communication described a rat
model of iron deficiency in which maternal iron restric-
tion during pregnancy led to significantly lower levels of
iron in the brains of newborn rats compared to levels in
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pups of iron sufficient fed mothers. Parenteral adminis-
tration with iron isomaltoside to the pregnant female
rats with iron deficiency restored normal levels of iron
in the brain of the newborn pups. Hence, the adminis-
tered iron passed the placenta and fetal blood brain
barrier. The parental supply with iron isomaltoside also
restored hemoglobin level in the developing rat, as at the
day of birth the newborn rats of ID mothers (group C) had
a significantly lower hemoglobin level (3.6 ± 0.18 mmol/L)
than the newborn rats of mothers fed a normal diet (6.02 ±
0.09 mmol/L) (Moos et al., in preparation).
In future studies, the translational model of the

present brief study may be applied to examine morpho-
logical and biochemical consequences of iron deficiency
and iron deficiency treatment in the developing fetal hu-
man brain if confirmed in extended and repeat studies.
Although this will be difficult to perform in humans and
thereby a limitation in the translation of the present
study, it should nonetheless be conceivable for clinical

research by administering iron to human mothers early
and later in pregnancy. Thereby, it should be possible to
measure serum concentrations of iron in neonates to
follow the cognitive and behavioral outcome of children
over years.

Conclusions
This translational study may provide useful data allow-
ing for optimal planning and transition into clinical
trials as the translational model may be extended to
also include assessment of associated behavioral conse-
quences and potential correlations to morphological
and biochemical consequences of iron deficiency and
iron deficiency treatment in the developing fetal brain.
The model also represents a unique model making it
possible to examine details regarding regulation of
maternally administered iron across the placenta as well
as the fetal blood-brain barrier. Further, it allows future
studies of optimal timing and dose levels of iron treat-
ment in the pregnant mother to optimize fetal brain
development in iron deficient mothers.
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Fig. 1 The levels of iron in brains of newborn rat pups of mothers fed
with iron deficient diet with or without supplementation. In the brain
iron (Fe) is significantly lower in the pups from mothers on the iron
deficient diet (C group) compared to the pups from mothers on the iron
deficient diet treated with parental iron isomaltoside at E 14 (B group)
and pups from normal fed mothers equal to an iron sufficient diet (N
group). The A group which represents pups from mothers on the iron
deficient diet treated with parental iron isomaltoside at E0 did not differ
from either of the B or N groups, but it was still higher than in C. Data
are presented as mean ± SEM (n= 4–5). * p< 0.01
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