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Abstract

Background: The loss of large amounts of blood postpartum can lead to severe maternal morbidity and mortality.
Understanding the nature of postpartum blood loss distribution is critical for the development of efficient analysis
techniques when comparing treatments to prevent this event. When blood loss is measured, resulting in a continuous
volume measure, often this variable is categorized in classes, and reduced to an indicator of volume greater than a
cutoff point. This reduction of volume to classes entails a substantial loss of information. As a consequence, very large
trials are needed to assess clinically important differences between treatments to prevent postpartum haemorrhage.

Methods: The authors explore the nature of postpartum blood loss distribution, assuming that the physical properties
of blood loss lead to a lognormal distribution. Data from four clinical trials and one observational study are used to
confirm this empirically. Estimates of probabilities of postpartum haemorrhage events ‘blood loss greater than a cutoff
point’ and relative risks are obtained from the fitted lognormal distributions. Confidence intervals for relative risk are
obtained by bootstrap techniques.

Results: A variant of the lognormal distribution, the three-parameter lognormal distribution, showed an excellent fit to
postpartum blood loss data of the four trials and the observational study. A measurement quality assessment showed
that problems of digit preference and lower limit of detection were well handled by the lognormal fit. The analysis of
postpartum haemorrhage events based on a lognormal distribution improved the efficiency of the estimates. Sample
size calculation for a hypothetical future trial showed that the application of this procedure permits a reduction of
sample size for treatment comparison.

Conclusion: A variant of the lognormal distribution fitted very well postpartum blood loss data from different
geographical areas, suggesting that the lognormal distribution might fit postpartum blood loss universally. An
approach of analysis of postpartum haemorrhage events based on the lognormal distribution improves efficiency
of estimates of probabilities and relative risk, and permits a reduction of sample size for treatment comparison.
Trial registration: This paper reports secondary analyses for trials registered at Australian New Zealand Clinical
Trials Registry (ACTRN 12608000434392 and ACTRN12614000870651); and at clinicaltrials.gov (NCT00781066).

Keywords: Postpartum blood loss, Lognormal, Blood loss distribution, Postpartum haemorrhage, Clinical trials,
Digit preference, Limit of detection of blood loss measures
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Abstracto

técnicas de bootstrap.

para comparar tratamientos.

clinicaltrials.gov (NCT00781066).

Antecedentes: La pérdida de grandes cantidades de sangre después del parto puede llevar a morbilidad y mortalidad
materna severas. Entender la naturaleza de la pérdida de sangre postparto es critico para el desarrollo de técnicas de
andlisis eficientes cuando se comparan tratamientos para prevenir este evento. Cuando se mide la pérdida de sangre,
que resulta en una variable continua, frecuentemente esta variable se categoriza en clases y se reduce a un indicador
de volumen mayor que un cierto punto de corte. Esta reduccion del volumen a categorias conlleva una pérdida
sustancial de informacion. En consecuencia, son necesarios ensayos muy grandes para evaluar diferencias clinicamente
importantes entre tratamientos de prevenciéon de hemorragia postparto.

Métodos: Los autores examinan la naturaleza de la distribucién de pérdida de sangre postparto, suponiendo que las
propiedades fisicas de la pérdida de sangre resultan en una distribucion lognormal. Los datos de cuatro ensayos
clinicos y de un estudio observacional se usan como confirmacion empirica. Las estimaciones de la probabilidad del
evento hemorragia postparto ‘pérdida de sangre mayor que un cierto punto de corte’ y riesgos relativos se obtienen
del ajuste de las distribuciones lognormales. Los intervalos de confianza para el riesgo relativo se obtienen usando

Resultados: Una variante de la distribuciéon lognormal, la distribucion lognormal con tres pardmetros, produjo un
excelente ajuste a los datos de pérdida de sangre postparto para los cuatro ensayos y para el estudio observacional.
Una evaluacion de la calidad de las medidas mostré que problemas de preferencia de digito y de limite minimo de
deteccion eran bien controlados por el ajuste lognormal. El andlisis del evento hemorragia postparto basado en la
distribucion lognormal mejor¢ la eficiencia de las estimaciones. El clculo de tamafo de muestra para un futuro
ensayo hipotético mostrd que la aplicacion de este procedimiento permite reducir el tamafo de muestra requerido

Conclusién: Una variante de la distribuciéon lognormal ajustd muy bien a los datos de pérdida de sangre postparto de
diferentes areas geograficas, sugiriendo que la distribucion lognormal podria ajustar a la pérdida de sangre postparto
universalmente. Una estrategia de andlisis para los eventos de hemorragia postparto basada en la distribucion
lognormal mejora la eficiencia de las estimaciones de probabilidades y de riesgo relativo, y permite una
reduccion del tamafo de muestra para comparar tratamientos.

Registro de los ensayos: Este articulo reporta andlisis secundarios para ensayos registrados en los siguientes
registros: Australian New Zealand Clinical Trials Registry (ACTRN 12608000434392 y ACTRN12614000870651);

Palabras clave: Pérdida de sangre postparto, Lognormal, Distribuciéon de pérdida de sangre, Hemorragia
postparto, Ensayos clinicos, Preferencia de digito, Limite minimo de deteccion en medidas de pérdida de sangre

Plain English summary

The loss of large amounts of blood postpartum can lead
to severe maternal morbidity and mortality. Under-
standing the nature of postpartum blood loss distribu-
tion is critical for the development of efficient analysis
techniques when comparing treatments to prevent this
event. When blood loss is measured, resulting in a con-
tinuous volume measure, often this variable is catego-
rized in classes, and reduced to an indicator variable of
blood loss greater than a certain cutoff point. This
reduction of volume to an indicator variable entails a
substantial loss of information. As a consequence, very
large trials are needed to assess clinically important dif-
ferences between treatments to prevent postpartum
haemorrhage. Using data from four clinical trials and
one observational study, the authors explore the nature
of blood loss distribution and show that a variant of the

lognormal distribution fits postpartum blood loss data
from different geographical areas and times, thus suggest-
ing that the lognormal distribution might fit postpartum
blood loss universally. Based on this finding, they propose
a lognormal approach of analysis of postpartum haemor-
rhage events of the type ‘blood loss greater than a certain
cutoff point, based on fitting a lognormal distribution
to the data. The proposed approach improves efficiency
and permits a reduction of sample size for treatment
comparison.

Background

Postpartum haemorrhage is a significant contributor to
severe maternal morbidity, and the leading direct cause
of maternal mortality worldwide [1-4]. Occurrence of
postpartum haemorrhage (PPH) is defined as blood loss


http://clinicaltrials.gov

Carvalho et al. Reproductive Health (2018) 15:199

of 500 ml or more within 24 h after birth, and severe
PPH (sPPH) as blood loss of 1000 ml or more [5].

It is now accepted that clinical trials conducted to
compare treatments to prevent post partum haemorrhage
should measure blood loss weight or volume, as opposed
to subjective evaluation. It has been shown that the visual
estimation underestimates the blood loss and that this
underestimation increases when the loss is greater than
300 ml [6].

The estimation of PPH and sPPH is typically done by
computing the sample proportions of women with mea-
sured blood loss above the pre-specified cutoff point
corresponding to each of these events. Transforming a
continuous variable to a dichotomous variable by grouping
values into two or more categories may result in a consid-
erable loss of power [7]. For a response variable, in a Monte
Carlo study to investigate the effects of categorization of
dependent variables on power to detect true effects, it was
found that “the loss of power and required sample size
increase were substantial under conditions in which the
coarsely categorized variable is highly skewed, has few
categories (e.g., 2, 3), or both.” [8] This is in fact the case of
postpartum blood loss volume, which has a right-skewed
distribution and is categorized in two categories. In trials to
compare treatments to prevent postpartum haemorrhage,
the use of an indicator variable, added to the low preva-
lence, results in very large sample sizes needed to detect
improvements in prevention of blood loss endpoints when
new treatments or procedures are evaluated.

Other caveats of categorization are the assumptions
that there is a discontinuity in response as the cutoff
point is crossed, and that the risk of maternal severe
morbidity and mortality is the same for blood loss of, for
example, 1001 mL and 1800 mL.

The development of a statistical analysis technique
to analyze continuous postpartum blood loss volume
depends on the knowledge of its distribution. The aim
of this paper is to show empirically that the distribution of
postpartum blood loss volume is lognormal, that the
lognormal distribution can be used as a model for a
lognormal analysis of postpartum blood loss, and to
present the following applications of this finding for
clinical trials: 1) Analyses using continuous blood loss
volume based on the lognormal distribution improve the
efficiency of comparisons of the proportions of sPPH and
PPH between treatment groups. 2) As a consequence,
the sample size needed to assess the difference of these
proportions between treatments could be substantially
reduced. 3) Researchers can also use outcomes based
directly on the lognormal distribution parameters for
many research questions, for example, to compare median
blood loss values between two treatments or the pro-
portions of women with blood loss greater than any
cutoff point.
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The lognormal distribution as a model for
postpartum blood loss

The lognormal distribution and its applications

The lognormal distribution is a positively skewed distribu-
tion. If a variate has the lognormal distribution, transform-
ation to logarithms results in a normal distribution.

The lognormal distribution has been used to model
many problems in physics, chemistry, biology, geology
and medicine [9]. In biology, the bacterial counts follow
lognormal distributions [10]. The flow of rivers has also
been shown to be lognormally distributed [11]. In medicine,
examples include blood pressure [12], the dose of a
drug required to cause a definite effect [13], the effect
of drugs on enzymes and of oxygen on haemoglobin
[13], measurements associated with the natural history
of cancer, including survival and tumour size [14], and
the volume of sweat [15].

The selection of a particular distribution to describe
data is often based on both empirical evidence and on
the physical and biological properties underlying the
phenomenon that generates the variable to be analyzed. In
the case of blood pressure, for example, empirical evidence
suggested that the blood pressure age-specific distribution
followed a lognormal distribution, and Makuch and Free-
man developed the justification for the lognormal distribu-
tion as a model for blood pressure [12]. Fitting distributions
to data to adequately represent a particular sample distribu-
tion without any other consideration than the closeness of
the fitted to the empirical distribution might be useful in
circumstances where substantive field properties are not
known.

In the case of postpartum blood loss, there could be a
physical reason to model the blood loss volume distribu-
tion by a lognormal distribution, namely that the increment
in the volume of blood lost at a certain time could be
assumed to depend on both the previous value of the
volume and a random proportionate error. However,
we will restrict our aim to show the quality of fit of the
lognormal distribution to the data. For a derivation of
the lognormal distribution from first principles, see,
e.g., Johnson, Kotz, Balakrishnaia [9], and Aitchison
and Brown [16].

If the postpartum blood loss volume (denoted as V) has
the lognormal distribution, its probability density function
(which gives the probability that V assumes a particular
value v) is the following:

11 -1 log(v)—m)2
vim,s) = ——= exp|— | ———— 1
fvim,s) =2 p[2< S (1)
for any—co < m < oo,s >0and v > 0.

The parameters m and s are the mean and the standard
deviation of U =log(V) respectively, which is a normal
random variable. The parameter exp(m) is the median of
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the lognormal distribution. In what follows, 7 and s will
be called location and scale parameters, respectively.

Empirical evidence: Initial lognormal fits

Three large clinical trials have been conducted by WHO
comparing two drugs [17, 18] or two management pro-
cedures [19] of the third stage of labour to prevent post-
partum haemorrhage. Another (smaller) trial has been
conducted by Althabe et al. comparing two management
procedures [20]. The data for these trials were made
available by the authors. We also present results from an
observational study [21], based on published summa-
rized results.

The characteristics of these studies are shown in
(Additional file 1: Table A1). The four trials will be referred
to as Misoprostol trial [17], Active Management trial [19],
Althabe et al. trial [20], and CHAMPION trial [18]. The
observational study will be referred to as Bamberg et al.
study [21].

The methods to measure blood loss were similar but
differed slightly across the studies: in the Misoprostol trial
[17], blood loss was measured by collecting the blood in a
jar to measure the volume. In the Active Management
trial [19], the Althabe et al. trial [20] and the CHAMPION
trial [18], the blood loss was measured by collecting the
blood in a drape and weighing the drape. In the Bamberg
et al. study [21], the blood was collected in a calibrated
transparent plastic drape.

We first described the blood loss data by standard
histograms, probability plots and quantile-quantile plots
(see explanation of probability and quantile-quantile plots
in Appendix) from fitting the lognormal distribution (1)
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to data from the four trials listed above. We did this by
treatment group for three of the trials [17, 19, 20], and
for aggregated treatment groups for the CHAMPION
trial, as the blood loss volume distributions were prac-
tically identical [18]. For illustration, Fig. 1 displays the
histogram of the blood loss volumes for one treatment
group of the Active Management trial, with the fitted
lognormal density function superimposed (red curve).
For all the trials the lognormal distribution showed a
similar picture and one would visually conclude that it
fitted to the data very well.

A closer look to goodness of fit, however, using prob-
ability plots, suggested that the fit was not very good for
values of the volume V smaller than 50 mL. This is illus-
trated for the Active Management trial in Fig. 2, where
the probability plot shows that the simple lognormal
distribution is adequate to fit the blood loss volume
distribution for volumes greater than 50 mL, but volumes
below 50 mL cannot be measured with precision. We
show this as an illustration, as the fits for all the four
trials presented a very similar behaviour.

When we look at the probability plot for the Miso-
prostol trial, shown in Fig. 3, we observe the same
behaviour, namely that 1) for volumes above 100 mL
the graph is fairly linear and within the confidence
interval of the probability plot, even on the far right
tail; 2) the fit is not good for volumes under 40, as the
data points fall entirely off the confidence interval; but
we see another interesting feature, that 3) the graph has
a ragged aspect.

We decided then to have a closer look at measurements,
which we describe in the next section.

0200 600 1000 1400 1800 2200 2600 3000 3400
Blood loss volume (mL)
LogNormal(5.38669,0.83365)

Fig. 1 Blood loss volumes (mL) for the Simplified Package of the Active Management trial
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Fig. 2 Probability plot for the fit of a two-parameter lognormal
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Fig. 3 Probability plot for the fit of a two-parameter lognormal
distribution for the Misoprostol treatment of the Misoprostol trial
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Measurement validation

Digit preference

It was noted that the measurements for the Misoprostol
and Active Management trials clumped on multiples of
10, 50 and 100mL and grams respectively. The same
feature was not found for the CHAMPION trial. Table 1
shows the relative frequencies of values multiple of 10,
50 and 100 (mL or grams depending on the trial). In the
table the observed relative frequencies can be compared
with those expected if no clumping effect (digit preference)
had been present.

Table 1 shows that the values recorded for the Miso-
prostol trial have been rounded to multiples of 100 more
than expected, and this explains the ragged aspect of the
line in Fig. 3. The same effect happened with the Active
Management trial, but to a lesser degree. There is no
evidence of this rounding for the CHAMPION trial data.
The digit preference feature is illustrated for the Miso-
prostol trial using histograms (Fig. 4).

The digit preference feature might have an impact on
the binomial estimates of the proportions of PPH and
sPPH, introducing a positive bias when values are
rounded to nearest 100. As it is expected that the
frequencies on the right tail of the distribution will
decrease monotonically with the volume, the amount
moved from the left neighboring class will appear in
excess of the corresponding points on the right neighbor-
ing class, therefore increasing the estimate of the event
“greater than 1000 (say)”. The difference in shifted
points proportions might be large compared to the
proportion of sPPH.

The possible bias arising from rounding might also result
in an overestimation of the variance of the estimator, as
the measurement error is also subject to variation.

Limit of detection
Every system of measurement has a limit of detection
(LOD). Values below the LOD will not be measured
precisely [22].

As shown previously in Fig. 2, measurements below
50 mL seem to be measured with low precision, suggesting

Table 1 Expected and observed frequencies of data multiple of
10, 50 and 100 in the three large trials: Misoprostol trial [17],
Active Management trial [19], CHAMPION trial [18]

Multiple  Expected ~ Observed frequency

of’ frequency Misoprostol  Active CHAMPION
trial Management trial  trial

10 0.10 0.90 035 0.09

50 0.02 0.59 0.09 0.02

100 0.01 042 0.03 0.01

®The unit is mL in the Misoprostol trial and grams in the Active Management
and CHAMPION trials
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lognormal fit (red line), Misoprostol treatment, Misoprostol trial
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Fig. 4 Histograms a: showing digit preference (narrow bins) and lognormal fit (red line), and b: masking digit preference (bins of 100 mL) and

Blood loss volume (mL)

that the LOD for this measurement is around 50 mL. This
finding was also implicit in Bamberg et al’s paper, which
reports volumes in multiples of 50 mL [21].

Measurements below 50 mL were distributed as a uniform
variate for all trials. For the Misoprostol trial, in particular,
values below 100 mL were distributed as a uniform random
variable. This shows that the volumes registered below
50 mL (Active Management trial) or below 100 mL (Miso-
prostol trial) are random values between 0 and 50 or
between 0 and 100 respectively.

Note however that this imprecision of measurements
in the left tail of the distribution will not affect direct
estimates of proportions of sSPPH and PPH, which involve
the right tail. It is, however, affecting the fit of a simple
lognormal distribution, and we will describe how we cor-
rected for this in the next section.

Correcting for measurement problems: The three-
parameter lognormal distribution

We corrected the deviation from the lognormal distribu-
tion due to values reported below the LOD, using the
three-parameter lognormal distribution (see, e.g. Meeker
and Escobar 1998, page 111 ff) [23], that has the following
probability density function:

fv(vim,s,t) = f(v-t;m,s)forv > ¢, (2)

where f is the lognormal density defined in (1).
The third parameter t improved the goodness of fit.

Empirical evidence: Final lognormal fits
Table 2 presents the estimated parameters in each
trial, by treatment or intervention (Misoprostol,
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Table 2 Estimated parameters for the fitted three-parameter lognormal distribution for the five studies, with two-sided 95%
confidence intervals (Cl) (the location parameter is m in formula (3), the scale parameter is s, and the third parameter is t):
Misoprostol trial [17], Active Management trial [19], CHAMPION trial [18], Althabe et al. trial [20] and Bamberg et al. study [21]

Trial Treatment Parameter Estimate Std Error 95% Cl
Lower limit Upper limit
Misoprostol Misoprostol location 558 0011 5.556 5.600
scale 0.71 0.008 0.695 0.726
t -8.60 1.705 -11.945 —5.261
Oxytocin location 5.46 0.011 5437 5.482
scale 0.69 0.008 0.677 0.708
t -12.01 1.654 —15.249 —8.765
Active Management Simplified Package location 563 0013 5.609 5.658
scale 0.63 0.008 0611 0.643
t —47.38 2.549 -52373 —42.382
Full Package location 557 0012 5550 5.598
scale 0.65 0.008 0.632 0.664
t —43.53 2.300 —48.034 -39.019
CHAMPION Aggregated location 5.19 0.009 5.167 5.204
scale 0.83 0.007 0812 0.840
t -22.25 0.937 —24.089 —20415
Althabe et al Hands Off location 557 0.141 5299 5.850
scale 0.72 0.101 0.522 0917
t 55.14 24474 7.176 103.113
ccr location 537 0.132 5.110 5628
scale 0.80 0.101 0.600 0.997
t 62.88 16414 30.709 95.049
Bamberg et al - location 547 - - -
scale 0.66 - - -

Active Management, Althabe et al. trials) or aggre-
gated (CHAMPION trial).

Figures 5 and 6 provide evidence for the suitability of the
three-parameter lognormal distribution as a good model for
postpartum blood loss volumes. Figure 5 shows the ob-
served values in overlay with the fitted lognormal cumula-
tive distribution functions for each of the four trials. For the
three large trials (panels a, b and c) the observed and fitted
values and confidence intervals were so close that they were
completely confounded in the graph when including the
whole range. Therefore we have inserted a magnified area in
the range 400 to 1400 mL, showing better the four elements
of the graph, which are still clearer and more distinct for the
smaller trial (panel d): observed values (black dots) well in
agreement with the fitted lognormal curve (red line); 95%
confidence band for the lognormal estimates (red area), nar-
rower than the 95% confidence interval for the binomial es-
timates (blue lines). From these graphs we can conclude: 1)
there is an excellent fit of the three-parameter lognormal
distribution to the blood loss data of the four trials; 2) the

precision of estimates of the proportion of events of the type
blood loss greater than a certain value is greater with the
lognormal approach compared to the binomial approach.

Figure 6 presents quantile-quantile plots, where the
straight line demonstrates a very good fit up to 1800 mL
(Misoprostol trial, panel a), 1500 mL (Active Management
trial, panel b) and in all the range (CHAMPION and
Althabe et al. trials, panels ¢ and d respectively).

Goodness of fit statistics (Akaike Information Criterion
and Bayes Information Criterion) for the three-parameter
lognormal and other candidate distributions (lognormal,
Smallest Extreme Value, Largest Extreme Value, Log Gener-
alized Gamma) also show that this variant of the lognormal
distribution fits the data very well (see Additional file 2).
Quantiles for the fitted three-parameter lognormal distribu-
tion and for the empirical distributions for the four trials,
corresponding to Fig. 5, have been calculated (see Additional
file 3).

Table 2 also shows the results for the Bamberg et al.
study [21], which reported five quantiles (0.05, 0.25, 0.50.
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0.75 and 0.95) of postpartum blood loss for 739 deliver-  the blood loss measurement procedure rather than to the

ies. Using the reported quantiles we recovered the true blood loss volume.

distribution by finding, within the lognormal family of

distributions, the one with quantiles closest to the series ~ Applications

of quantiles presented, applying the solution implemented  Improving the precision of estimates

by Belgorodski et al. [24] in R software (package Estimating the proportions of sPPH and PPH

rriskDistributions). The estimated parameters of the fitted three-parameter
Figure 7 shows the results of fitting the lognormal distri-  lognormal distribution shown in Table 2 were estimated

bution using the quantiles reported in Bamberg et al. by maximum likelihood, for each of the five studies. The

paper [21]. In the last two lines of Table 2 we present the  estimates of sPPH and of PPH are simply the values of

estimates of the parameters of the lognormal distribution, the complement of the fitted cumulative distribution

m =5.47 and s =0.66, well in line with the results of the function (the probability of larger value) at the points

four trials. 1000 and 500, respectively. These are computed directly
The estimated location and scale parameters are very from the lognormal estimated parameters, which are

similar across the different studies. The trials were done in  estimated by maximum likelihood, and therefore they are

different places and times, so it seems that the lognormal  also maximum likelihood estimators. All the asymptotic dis-

distribution fits postpartum blood loss data universally. tributional properties of the maximum likelihood estimators

The third parameter varies more widely, probably due to  apply, and therefore confidence intervals and hypothesis
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for the two treatments were almost identical

tests are readily available. This estimation approach will be  binomial approach. We provide the maximum likelihood
denoted the lognormal approach. based confidence limits for this binomial proportion.

On the other hand, the approach of computing the In Tables 3 and 4 we show estimates of sPPH and PPH
sample proportion of women with blood loss above a cut  respectively, obtained by the binomial approach and by the
off point, or binomial proportion, will be denoted the lognormal approach. As shown in Table 3, the differences

10 -

0.8
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02

0.0

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Blood loss volume (mL)
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Fig. 7 Quantiles reported in Bamberg et al. observational study (dots) and fitted lognormal distribution (full line)
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Table 3 Estimated proportions of sPPH for the four trials, with two-sided 95% confidence intervals (Cl), by the binomial and by the
lognormal approaches: Misoprostol trial [17], Active Management trial [19], CHAMPION trial [18] and Althabe et al. trial [20]

Trial Treatment Proportion 95% Cl Width Width ratio lognormal
Lower limit Upper limit ggot/?g vs binomial (%)
Binomial
Misoprostol Misoprostol 0.03962 0.03582 0.04380 0.00797 -
Oxytocin 0.02839 0.02520 0.03199 0.00679 -
Active Management Simplified Package 0.02057 001814 0.02331 0.00517 -
Full Package 0.01885 0.01653 0.02148 0.00495 -
CHAMPION Aggregated 0.01560 0.01400 0.01739 0.00339 -
Althabe et al Hands Off 0.05102 0.02199 0.11392 0.09194 -
ccT 0.02970 0.01015 0.08372 0.07356 -
Lognormal
Misoprostol Misoprostol 0.02976 0.02740 0.03229 0.00490 614
Oxytocin 0.01748 0.01582 0.01928 0.00346 51.0
Active Management Simplified Package 0.01760 0.01603 0.01930 0.00327 63.2
Full Package 0.01685 0.01532 0.01850 0.00317 64.0
CHAMPION Aggregated 0.01737 0.01617 0.01865 0.00248 73.2
Althabe et al Hands Off 0.03799 0.01655 0.07807 0.06151 66.9
CccT 0.03250 0.01369 0.06885 0.05515 750

between the binomial and the fitted three-parameter log-
normal estimates of sSPPH are of the order of 0.3% on the
absolute scale for the Active Management and the CHAM-
PION trials, and the 95% confidence intervals overlap. For
the Althabe et al. trial the 95% confidence intervals also

overlap, and they are wider as this was a small trial. For the
Misoprostol trial the 95% confidence intervals do not over-
lap. We attribute this to the imprecision resulting from
rounding (see section on Digit preference), that affects
more drastically the binomial estimate.

Table 4 Estimated proportions of PPH for the four trials, with two-sided 95% confidence intervals (Cl), by the binomial and by the
lognormal approaches: Misoprostol trial [17], Active Management trial [19], CHAMPION trial [18] and Althabe et al. trial [20]

Trial Treatment Proportion 95% Cl Width of Width ratio lognormal
Lower limit Upper limit the 95%Cl vs binomial (%)
Binomial
Misoprostol Misoprostol 0.19462 0.18666 0.20283 0.01617 -
Oxytocin 0.13526 0.12843 0.14239 0.0139% -
Active Management Simplified Package 0.13751 0.13137 0.14389 0.01252 -
Full Package 0.12847 0.12251 0.13468 001217 -
CHAMPION Aggregated 0.09128 0.08743 0.09530 0.00787 -
Althabe et al Hands Off 0.22449 0.15318 0.31658 0.16340 -
ccT 0.16832 0.10783 025311 0.14528 -
Lognormal
Misoprostol Misoprostol 0.17866 0.17236 0.18510 0.01275 788
Oxytocin 0.13030 0.12481 0.13596 0.01115 799
Active Management Simplified Package 0.14198 0.13687 0.14722 0.01035 827
Full Package 0.13192 0.12697 0.13701 0.01004 82.5
CHAMPION Aggregated 0.09709 0.09381 0.10046 0.00665 84.5
Althabe et al Hands Off 023344 0.17098 030684 0.13586 83.1
ccT 0.18662 0.13103 0.25485 0.12382 85.2
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In Table 4 we observe a similar picture for PPH, with
confidence intervals overlapping except for one of the
treatments of the Misoprostol trial.

The confidence intervals are shorter for the lognormal
based estimates. For the sPPH proportion, the ratio of
the width of the 95% confidence interval of the lognormal
approach in relation to that of the binomial approach varies
around 60% (from 51 to 75%). For the PPH proportion, the
width ratios are around 80% (from 79 to 85%).

Estimating relative risks

We computed relative risks to compare the two treat-
ments for the four trials, as in the published results [17—
20]. We defined a relative risk (RR) as the ratio of two pro-
portions, the proportion of women with sPPH (or PPH) in
one arm to the proportion of women with sPPH (or PPH)
in the other arm. For the binomial approach, confidence in-
tervals for the RR were computed using maximum likeli-
hood. For the lognormal approach, confidence intervals for
the RR were computed using bootstrap. One thousand boot-
strap samples were generated for each treatment. The esti-
mates of the proportions of sPPH and PPH were
computed for each bootstrap sample, for each treatment.
Following Efron and Tibshirani [25], the two bootstrap
samples tables were matched by row (sample) and the RRs
computed. From the distribution of the 1000 bootstrapped
RRs, the confidence interval was obtained.
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The RRs with 95% confidence intervals for sPPH are
shown in Table 5 for both the binomial and the lognormal
approach. The confidence intervals are narrower for the
lognormal approach than for the binomial approach, with
the only apparent exception of the Misoprostol trial for
the sPPH outcome (for which the widths of the confidence
intervals were 0.44 for both approaches). However, we
must take into account that the variances are estimated
assuming exact observations, ignoring the fact that there
is error in measurements. Other than this, the confidence
intervals for the RR are shorter for the lognormal based
estimates, varying from 57 to 73% for sPPH, and from 72
to 84% for PPH.

Sample size
Consider the sample size determination for the comparison
of two drugs to prevent sPPH. Let us suppose that one drug
is in current use and the rate of sSPPH with this drug is 2%.
Assume that a change to the new drug would be worth if it
results in a sSPPH rate below 1.5% (a change of 0.75 on the
relative scale, or an improvement of 25%). Further assume
a 5% significance level and a power of 80% for this test. For
the sake of simplicity, we assume a completely randomised
experiment (also known as ‘parallel group design’), a super-
iority hypothesis and a one-sided test.

The sample size for the binomial-based statistic is
computed by standard procedures, based on the asymptotic

Table 5 Estimated relative risks of sSPPH and PPH for four trials, with two-sided 95% confidence intervals (Cl), by the binomial and by
the lognormal approaches: Misoprostol trial [17], Active Management trial [19], CHAMPION trial [18] and Althabe et al. trial [20]

Event Trial RR 95% Cl Width of Width ratio lognormal
Approach Lower limit Upper limit the 95% Cl vs binomial (%)
sPPH
Binomial Misoprostol 1.39 1.19 1.63 044 -
Active Management 1.09 091 1.31 040 -
CHAMPION 1.04 0.87 1.25 0.38 -
Althabe et al 1.76 040 7.56 7.16 -
Lognormal Misoprostol 1.69 148 192 044 100.0
Active Management 1.05 091 1.20 0.29 72.5
CHAMPION 1.00 0.89 1.13 0.24 63.2
Althabe et al 1.16 0.38 444 4.06 56.7
PPH
Binomial Misoprostol 144 1.35 1.54 0.19 -
Active Management 1.07 1.00 1.14 0.14 -
CHAMPION 0.99 0.92 1.06 0.14 -
Althabe et al 133 0.76 235 1.59 -
Lognormal Misoprostol 137 1.29 145 0.16 84.2
Active Management 1.08 1.02 1.14 0.12 85.7
CHAMPION 1.01 0.95 1.06 0.11 786
Althabe et al 1.26 0.81 1.95 1.14 71.7
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normal distribution of the difference estimator. The result
(without correction for continuity) is 17,008 participants
(8504 in each treatment group).

To determine sample size based on the lognormal
distribution, we rely on the normal distribution, by
transforming the requirements expressed in the volume V
to equivalent requirements in log(V). For the standard
deviation s, we use the results from the fittings of the
lognormal distribution, s=0.7, the estimated standard
deviation of the distribution of log(V) (all the fits gave
approximately this value for s).

The sPPH proportion is.

p =DP(V > 1000|m,s = 0.7) (3)

and the two values to be compared are 0.02 and 0.015.
The expression (3) is equivalent to.

P(log(V) > log(1000)|m,s = 0.7)

where log(V) has the normal distribution. Therefore

P<Z N zogug(;m—m]) L,

where Z has the standard normal distribution, and compar-
ing p=0.02 vs p =0.015 from the lognormal distribution is
equivalent to comparing the two corresponding values of m
from the normal distribution.

From the standard normal distribution, zgog5 = 2.1701
and zg g = 2.0537. The solutions for m are:

for p = 0.015,m = log(1000)-2.1701 x 0.7
— 5.3887;

forp=10.02, m = log(1000)-2.0537 x 0.7
= 5.4701.

It is sufficient to calculate the sample size to compare
two means of normal distributions, with the require-
ments set forth above. The solution is a total sample
size of 1832, to be divided equally in two groups of 916
units.

Inference based on the lognormal parameters directly
When a variate measured in the original units can be
described by a lognormal distribution, transformation
to logarithms results in a normal distribution. Tests and
confidence intervals can be computed on the basis of nor-
mal theory, and confidence limits can be re-transformed
to the original scale.

Since the blood loss volume is lognormally distributed,
several interesting consequences follow. The distribution
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is characterized by two parameters, m and s (and eventually,
a third parameter ). The statistics given by the mean of the
logarithms of the observed volumes,

1 n
1 ) 4
m p ,E:l og(v;),

and the sample variance of the logarithm of V,

2 EZ( log(vi)—ii1)’

n

are jointly sufficient for the parameters. Hence, every
inference can be based on these two statistics.

The most efficient estimators of m and s are given by
the mean and the standard deviations of the logarithms
of the volumes, and the usual properties of inference
based on the normal distribution apply.

The outcomes used in clinical trials, the complement
of the cumulative distribution function at 500 mL and
1000 mL, can be readily computed from the knowledge
of these two statistics. There might be other hypotheses
of interest, like the comparison of two medians.

Given that the variance is relatively stable (as shown in
Table 2, the estimate of the parameter s, varied between
0.7 and 0.8 across the five studies), it seems reasonable
to base comparisons on the medians [26]. For fixed s, in
a comparison of two groups, m; < m, implies that the
probability of a larger value with treatment 1 is smaller
than with treatment 2. Then we can use common statistical
knowledge, estimating and comparing medians, taking into
account that the difference of means of log(V) is equivalent
to the ratio of medians on the untransformed scale [26].

Discussion

Several treatments for preventing postpartum haemor-
rhage have been compared in clinical trials, and other
postpartum haemorrhage clinical trials are expected to be
conducted in the future. Severe postpartum haemorrhage
(sPPH) occurs at rates of 1 to 4% typically, varying accord-
ing to time and geographical region [1]. When comparing
treatments or interventions to prevent this event, the
available technique for analysis up to date was to estimate
the two binomial proportions of sPPH, demanding very
large and costly clinical trials.

Using postpartum blood loss data available from four
trials and quantiles from one observational study we
have shown that the blood loss volume distribution can
be very well represented by the three-parameter lognormal
distribution. Using this finding, we showed that the preci-
sion of estimates of proportion of events of the type ‘blood
loss more than a cut off point’ is improved, as well as the
comparison of these proportions using relative risk.
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When postpartum blood loss weight or volume is
measured, we suggest to make use of the richness provided
by this continuous variable in the analysis. The procedure
we propose consists of the following steps: first fit a
lognormal distribution to the measured blood loss data.
The parameters of the lognormal distribution can be
estimated by maximum likelihood. Once the cumulative
distribution function of the volume or its complement
is defined by its parameters, the proportion of sPPH,
for example, is just the complement distribution at the
point 1000. To compare treatments and compute relative
risks with confidence intervals, we propose using bootstrap
techniques. A step-by-step illustration of the proposed
approach, using the data of the Althabe et al. trial [20],
has been published [27].

Other variables in medicine and biology related to size,
mass and volume have been conveniently represented by
the lognormal distribution [12-14], and the procedure
we propose could also be applied to these variables.

The most important and appealing application of using
the lognormal model for the distribution of the blood
loss volume is the possibility of a substantial reduction
of sample size in clinical trials, with consequent reduced
cost, while keeping the statistical precision requirements.
This is achieved through an improvement in the efficiency
of the estimation methods. In addition, more manageable
sizes can ensure that data quality is better preserved.

A possible limitation of the approach we propose is
whether the lognormal distribution is appropriate for
modeling postpartum blood loss when there is a strong
interest in the estimation of tail probabilities of the order
of magnitude of 1 to 4%. However, the techniques that we
used to assess the goodness of fit, such as cumulative dis-
tribution function, probability plots, and quantile-quantile
plots, showed that the fit was satisfactory for volumes of
more than 1000 mL. If interest arises for estimating more
extreme tail probabilities (more than 2000 mL, say), spe-
cial techniques should be considered [28]. Such a problem
would be of interest for blood storage for transfusions,
which is an even more rare event.

Another limitation is the additional statistical analysis
work needed to fit the three-parameter lognormal distri-
bution to the data and to compute confidence intervals
for the relative risk using bootstrap. However, this can be
done easily with current computer facilities available.

Conclusions

Our results suggest that a variant of the lognormal dis-
tribution fits postpartum blood loss universally. Based
on this finding, we propose a lognormal approach of
analysis of postpartum haemorrhage trials aiming to
compare events of the type ‘blood loss greater than a
certain cutoff point’ across treatments, based on the
lognormal distribution. As using all the measured data
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provides more information than a categorization [7, 8],
we expected the estimators based on the lognormal
approach to fare better than the binomial estimators, and
we showed empirically that this is the case: the estimates
based on the lognormal approach were more precise than
those based on the binomial approach. The proposed ap-
proach improves efficiency and permits a reduction of
sample size for treatment comparison.
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Appendix: definitions

Probability plot

The probability plot is a graphical technique for assessing
whether or not a data set follows a given distribution such
as the lognormal. The data are plotted against the lognormal
distribution. If the distribution of the data is lognormal, the
points will approximately lie on the line y = x.

Quantile-quantile plot

A quantile-quantile (q-q) plot is a graphical technique
for determining if two data sets come from populations
with a common distribution. In our case we compare the
distribution of fitted values with the empirical (observed)
distribution, therefore the q-q plot is a plot of the quan-
tiles of the fitted lognormal distribution against the quan-
tiles of the observed values. If the two distributions being
compared are similar, the points in the q—q plot will
approximately lie on the line y = x.
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